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PART-A
L.VECTOR CALCULUS
1. Find ‘a’, such that (3x—2y+z)i +(4x+ay—z)j+(x—y+2z)k is solenoidal.

BEL ONoy N

11.
12.

13.
14.

15.

16.
17.

18.

19.
20.

21.

22.

23.
24,

Show that, F = yzi +2x +xyk is irrotational.

Find the values of a,b,c so that the vector F = (x + y + az)i + (bx + 2y — 2)] + (—x +
cy + ZZ)E may be irrotational.

Define solenoidal vector function. If V = (x+3y)i +(y—2z) J +(x+24z)k is solenoidal, find
the value of 1.

Prove that Culr(grad ¢)=0

State Gauss divergence theorem.
State Stoke’s theorem.
State Green's theorem, in a plane.

Find @ if V& = (6xy + z3)i + (3x% — 2)] + (3xz% — y)k.

. Find the unit normal vector to the surface x2+xy+z2=4 at (1,-1,2)

ILORDINARY DIFFERENTIAL EQUATIONS

Solve the equation (D? —6D +13)y =0
Find the particular integral of (D* —2D+1)y = coshx.

Find the particular integral of (D? + 2D + 1)y = e *cosx
Find the particular integral of (D* -4D+4)y = x%>".
2
Solve x* d—Z+4xy+2y =0 .
dx dx
Find the Wronskian of y,,y, of y"—2y’+y=e*logx.

Solve the equation xzy" + xy' +y=0.

Convert (3x2D2 +5xD + 7) y= into an equation with constant coefficients.

xlog x
Transform the equation into a linear differential equation with constant coefficient.
d’y dy

Transform the equation (2x+ 3)2 e 2(2x+3) i

2 —-12y =6x into a differential equation
X X

with constant coefficients.

I1I. LAPLACE TRANSFORM

1-cost
[s the linearity property applicable to L{ } ?

Find the Laplace transform of Lt
[

1-et

Find the Laplace transform of f (t)= .

Find Laplace transform of tsin2t
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Define periodic function with an example.
Stat the first shifting theorem on Laplace transforms.

Evaluate L* [2;}
$°+6s+13

(s+1)°

Find f (t)if the Laplace transform of f(t)is

Find L™ [(s+zs)2+1] '

Verify initial value theorem for the function f (t)=ae™.

IV. ANALYTIC FUNCTIONS

State the Cauchy-Riemann equations in polar coordinates satisfied by an analytic
function.

Show that the function f (Z) =7 is nowhere differentiable.

Prove that every analytic function w=u(x,y)+iv(X,y) can be expressed as a function of

z alone.
Find the constants a,b,cif f(z)=x+ay+i(bx+cy) is analytic.

Prove that w=z” is analytic and hence, find i—w
z

Show that the function v =¢* sin yis harmonic.
Verify whether the function u = x* —3xy? + 3x* —3y® +1 is harmonic.
22+6

z2+7
Prove that a bilinear transformation has atmost two fixed points.
Find the map of the circle |z| =3 under the transformation w=2z.

Find the invariant points of the transformation w=

V.COMPLEX INTEGRATION

State Cauchy integral formula.

322 +7z+1

What is the value of the integral J' dz where Cis |z|= % ?
C

Evaluate Iz—dz Where C is the circle |z| = 1 .
Ja -2 2

Evaluate I f +4 dz Where C is the circle |z —E‘ = 1
227 +22 2| 3

Evaluate jﬁdz where Cis a)|z|=1, b)|z|=3.
lz-

2z

Calculate the residue of f (Z) = at its pole.

(z +1)2

Find the residue of the function f(z)= at a simple pole.

4
*(z-2)
If f(z):z_—ll—2(1+(z—1)+(z—1)2+ ..... ). find the residue of f (2) at z=1.

Expand f(z)=sinz in a Taylor series about origin.

State Cauchy’s residue theorem.
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PART-B
L.VECTOR CALCULUS

Find a and b so that the surface ax’-by’z—(a+3)x*=0 and 4x’y-z°-11=0 cut
orthogonally at the point (2,-1,-3).

Show that F =(y”+2xz*)i +(2xy—z)j+(2x*z—y+2z)k is irrotational and hence find its
scalar potential. .

Find the work done in moving a particle in the force field F =3xT +(2xz-y) j—-zk from
t=0 to t=1 along the curve x=2t>,y=t,z =4t>.

Verify Green’s theorem in the XY plane for j[(Sx—8y2)dx+(4y—6xy)dy] where C is the
boundary of the region given by x=0,y =0, x+cy =1.

Verify Green’s theorem for V =(x2 + yZ)T—nyT taken around the rectangle bounded by
the lines x=+a,y=0andy=b.

Verify the divergence theorem for the function A=x% +zj+yzk over the cube
x=xly=xlz=+1

Verify Gauss-divergence theorem for the vector function F :(x3 A yz)T—sz yj+2k over
the cube bounded by x=0,y=0,z=0and x=a,y=a,z=a

Verify Stoke’s theorm for F = (x2 - y2)7+2xyi taken around the rectangle formed by the
lines x=0,x=a,y=0,y=b.

Using Stoke’s theorem , evaluate Ilf.dF , where F =y +x*]—(x+ z)lz and C is the
C
boundary of the triangle with vertices at (0,0,0),(1,0,0)and (11,0).

Verify Gauss-divergence theorem for the vector function F :(x3 —yz)T—szyT+2IZ over

the cube bounded by x=0,y=0,z=0and x=a,y=a,z=a.

I1. ORDINARY DIFFERENTIAL EQUATIONS
solve (D”+4)y =x*c0s2x.

solve (D* —3D+2)y = 2cos(2x+3)+2¢*

2
Solve by the method of variation of parameters 2% +8y =tan 2x.
X

Apply the method of variation of parameters to solve (D2+4)y= sec2x.
2
Slove x° CI—Z+4xﬂ+2y =x? +i2
dx dx X

2
Solve d—Z+1ﬂ+ :12Iczgx
dx®  xdx X

2 dzy dy 2
Solve: (3x+2) F+3(3x+2)d——36y=3x +4x+1
X X

2 d?y dy .
Solve (1+Xx) d—+(1+ x)&+y=23|n(log(1+ x))

X2

. Solve %+4x+3y:t, ﬂ+2x+5y:e‘.
dt dt

. Solve %+ 2y =sin 2t, 2—){— 2x =cos2t. Given x=1 and y=0 at t=0
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IIL.LLAPLACE TRANSFORM

' Find L[cosat—cosbt}

. Find the Laplace transform of f (t) =te* cos2t.
. Find the inverse Laplace transform of ————— .
(s+1)(s+2)

. Find the inverse Laplace transform of ;2
(s+1)(s*+4)

t, O<t<a

rat oot < 0g Vit f(t+2a)=f(t)

. Find the Laplace transform of f (t) ={

1, O<t<a

. Find the Laplace transform of square wave function defined by f(t):{ 1 <2
-1, a<t<?2a

and f (t + 2a) =f (t) forallt.

sinwt, O<t<z/w
. . Find the Laplace transform of the Half wave rectifier f (t) = 7/ and
0 r/w<t<2z/w
f (t +2—”j = f(t)forallt.
w
. Apply convolution theorem to evaluate L™ > 5
(s°+a%)
SZ
. Find the inverse Laplace transform of
P (s*+a’)(s” +b?)
2
. Solve % + 4% +4y=sint, if % =0and y=2when t =0 using Laplace transform.
IV.ANALYTIC FUNCTIONS
. Find the regular function whose imaginary partis e™ (xcosy+ysiny)

sin 2x

. Determine the analytic function whose real partis ————
cosh 2y —cos 2x

Prove that the real and imaginary parts of an analytic function are harmonic functions.
If f(z)=u+iv is a regular function of z in a domain D then V*(u?)=p(p-1)u"*|f ’(z)|2

Verify that the family of curves U =c, and V=, cut orthogonally when u +iv=2z°.

Find the image of the circle |z+1 =1 in the complex plane under the mapping w= 1
z

. 1 . . . .
Show that the transformation w== transforms all circles and straight lines in the z-
z

plane into circles or straight lines in the w-plane.
Find the image of the hyperbola x* —y® =1 under the transformation w = 1
z

Find the bilinear transformation which maps the points 0, 1, « into i,1,-i.
Find the bilinear transformation which maps the points 1,i, -1 onto 0,1,0, Show that

the transformation maps the interior of the unit circle of the z- plane onto the upper
half of the w plane.
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V.COMPLEX INTEGRATION

sinzz? +cos rz?

Evaluate dz where Cis |z|=3.
o069
Evaluate J.;zdz where Cis the circle |z-2|= 1 by Cauchy’s integral formula.
{en@-2) 2
(z+1) _ _ : s
Evaluate | —————dz where C is the circle |Z +1+ || =2by Cauchy’s integral formula..
c(2* +22+4)
2
Expand the function f(z)= ZZ—_ in Laurent’s series for |z|>3and 2 <|z| > 3.
Z°+52+6
. Find the Laurent’s series of f(z) :#_(224_2) inl<|z+1<3.

Evaluate Zz—_ldz, where C is the circle |Z—i|=2using Cauchy’s residue
t(z+1) (z-2)
theorem.

. Using Cauchy’s residue theorem, evaluate _[ izdz where C is the circle

cz2(z-1)(z-2)

2z

do . : .
Evaluate I ——using contour integration.
o 2+cos6

1 K 1 . . .
Evaluate J. Wx using contour integration.

—0

o 2
X" =X+2 : . .
Evaluate J‘ﬁdx using contour integration.
S X +10x°+9

r cosm X , . :
Evaluate jﬁdx using contour integration.
X
0

A
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