AKSHEYAA COLLEGE OF ENGINEERING

Puludivakkam, (Near Nelvoy Junction), Maduranthagam Taluk, Kancheepuram 603 314, Tamil Nadu, India. Phone: + 91 44 27568004-02-05, email: principal@ace.ac.in (An ISO 9001:2008 Certified Institution)

Department of Science & Humanities

Subject Name: MATHEMATICS -II

Subject Code: MA6251 I Year/II Semester (2015-16)

PART-A I.VECTOR CALCULUS

- 1. Find 'a', such that $(3x-2y+z)\vec{i}+(4x+ay-z)\vec{j}+(x-y+2z)\vec{k}$ is solenoidal.
- 2. Show that, $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ is irrotational.
- 3. Find the values of a,b,c so that the vector $\vec{F} = (x + y + az)\vec{i} + (bx + 2y z)\vec{j} + (-x + cy + 2z)\vec{k}$ may be irrotational.
- 4. Define solenoidal vector function. If $\vec{V} = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+2\lambda z)\vec{k}$ is solenoidal, find the value of λ .
- 5. Prove that $Culr(grad \phi) = \vec{0}$
- 6. State Gauss divergence theorem.
- 7. State Stoke's theorem.
- 8. State Green's theorem, in a plane.
- 9. Find Φ if $\nabla \Phi = (6xy + z^3)\vec{i} + (3x^2 z)\vec{j} + (3xz^2 y)\vec{k}$.
- 10. Find the unit normal vector to the surface $x^2+xy+z^2=4$ at (1,-1,2)

II.ORDINARY DIFFERENTIAL EQUATIONS

- 11. Solve the equation $(D^2 6D + 13)y = 0$
- 12. Find the particular integral of $(D^2 2D + 1)y = \cosh x$.
- 13. Find the particular integral of $(D^2 + 2D + 1)y = e^{-x} \cos x$
- 14. Find the particular integral of $(D^2 4D + 4)y = x^2e^{2x}$.
- 15. Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0$.
- 16. Find the Wronskian of y_1 , y_2 of $y'' 2y' + y = e^x \log x$.
- 17. Solve the equation $x^2y'' + xy' + y = 0$.
- 18. Convert $(3x^2D^2 + 5xD + 7)y = \frac{2}{x \log x}$ into an equation with constant coefficients.
- 19. Transform the equation into a linear differential equation with constant coefficient.
- 20. Transform the equation $(2x+3)^2 \frac{d^2y}{dx^2} 2(2x+3)\frac{dy}{dx} 12y = 6x$ into a differential equation with constant coefficients.

III. LAPLACE TRANSFORM

- 21. Is the linearity property applicable to $L\left[\frac{1-\cos t}{t}\right]$?
- 22. Find the Laplace transform of $\frac{t}{e^t}$
- 23. Find the Laplace transform of $f(t) = \frac{1 e^{-t}}{t}$.
- 24. Find Laplace transform of $t \sin 2t$

- 25. Define periodic function with an example.
- 26. Stat the first shifting theorem on Laplace transforms.

27. Evaluate
$$L^{-1} \left[\frac{1}{s^2 + 6s + 13} \right]$$

- 28. Find f(t) if the Laplace transform of f(t) is $\frac{s}{(s+1)^2}$.
- 29. Find $L^{-1}\left[\frac{s}{(s+2)^2+1}\right]$.
- 30. Verify initial value theorem for the function $f(t) = ae^{-bt}$.

IV. ANALYTIC FUNCTIONS

- 31. State the Cauchy-Riemann equations in polar coordinates satisfied by an analytic function.
- 32. Show that the function $f(z) = \overline{z}$ is nowhere differentiable.
- 33. Prove that every analytic function w = u(x, y) + iv(x, y) can be expressed as a function of z alone.
- 34. Find the constants a,b,c if f(z) = x + ay + i(bx + cy) is analytic.
- 35. Prove that $w = z^2$ is analytic and hence, find $\frac{dw}{dz}$.
- 36. Show that the function $v = e^x \sin y$ is harmonic.
- 37. Verify whether the function $u = x^3 3xy^2 + 3x^2 3y^2 + 1$ is harmonic.
- 38. Find the invariant points of the transformation $w = \frac{2z+6}{z+7}$.
- 39. Prove that a bilinear transformation has atmost two fixed points.
- 40. Find the map of the circle |z| = 3 under the transformation w = 2z.

V.COMPLEX INTEGRATION

- 41. State Cauchy integral formula.
- 42. What is the value of the integral $\int_{C} \frac{3z^2 + 7z + 1}{z + 1} dz$ where C is $|z| = \frac{1}{2}$?
- 43. Evaluate $\int_C \frac{z \, dz}{(z-1)(z-2)}$, Where C is the circle $|z| = \frac{1}{2}$.
- 44. Evaluate $\int_C \frac{z+4}{z^2+2z} dz$ Where C is the circle $\left|z-\frac{1}{2}\right| = \frac{1}{3}$.
- 45. Evaluate $\int_{C} \frac{z}{z-2} dz$ where C is a |z| = 1, b |z| = 3.
- 46. Calculate the residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ at its pole.
- 47. Find the residue of the function $f(z) = \frac{4}{z^3(z-2)}$ at a simple pole.
- 48. If $f(z) = \frac{-1}{z-1} 2(1 + (z-1) + (z-1)^2 +)$, find the residue of f(z) at z = 1.
- 49. Expand $f(z) = \sin z$ in a Taylor series about origin.
- 50. State Cauchy's residue theorem.

PART-B I.VECTOR CALCULUS

- 1. Find a and b so that the surface $ax^3 by^2z (a+3)x^2 = 0$ and $4x^2y z^3 11 = 0$ cut orthogonally at the point (2,-1,-3).
- 2. Show that $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy z)\vec{j} + (2x^2z y + 2z)\vec{k}$ is irrotational and hence find its scalar potential.
- 3. Find the work done in moving a particle in the force field $\vec{F} = 3x^2\vec{i} + (2xz y)\vec{j} z\vec{k}$ from t=0 to t=1 along the curve $x = 2t^2$, y = t, $z = 4t^3$.
- 4. Verify Green's theorem in the XY plane for $\int_C \left[(3x 8y^2) dx + (4y 6xy) dy \right]$ where C is the boundary of the region given by x = 0, y = 0, x + y = 1.
- 5. Verify Green's theorem for $\vec{V} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0 and y = b.
- 6. Verify the divergence theorem for the function $\vec{A} = x^2 \vec{i} + z \vec{j} + yz \vec{k}$ over the cube $x = \pm 1, y = \pm 1, z = \pm 1$
- 7. Verify Gauss-divergence theorem for the vector function $\vec{F} = (x^3 yz)\vec{i} 2x^2y\vec{j} + 2\vec{k}$ over the cube bounded by x = 0, y = 0, z = 0 and x = a, y = a, z = a
- 8. Verify Stoke's theorm for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ taken around the rectangle formed by the lines x = 0, x = a, y = o, y = b.
- 9. Using Stoke's theorem , evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = y^2 \vec{i} + x^2 \vec{j} (x+z) \vec{k}$ and C is the boundary of the triangle with vertices at (0,0,0),(1,0,0) and (1,1,0).
- 10. Verify Gauss-divergence theorem for the vector function $\vec{F} = (x^3 yz)\vec{i} 2x^2y\vec{j} + 2\vec{k}$ over the cube bounded by x = 0, y = 0, z = 0 and x = a, y = a, z = a.

II. ORDINARY DIFFERENTIAL EQUATIONS

- 11. solve $(D^2 + 4)y = x^2 \cos 2x$.
- 12. solve $(D^2 3D + 2)y = 2\cos(2x + 3) + 2e^x$
- 13. Solve by the method of variation of parameters $2\frac{d^2y}{dx^2} + 8y = \tan 2x$.
- 14. Apply the method of variation of parameters to solve $(D^2+4)y=sec^2x$.
- 15. Slove $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 + \frac{1}{x^2}$
- 16. Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + y = \frac{12\log x}{x^2}$
- 17. Solve: $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} 36y = 3x^2 + 4x + 1$
- 18. Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin(\log(1+x))$
- 19. Solve $\frac{dx}{dt} + 4x + 3y = t$, $\frac{dy}{dt} + 2x + 5y = e^t$.
- 20. Solve $\frac{dx}{dt} + 2y = \sin 2t$, $\frac{dy}{dt} 2x = \cos 2t$. Given x=1 and y=0 at t=0

III.LAPLACE TRANSFORM

21. Find
$$L\left[\frac{\cos at - \cos bt}{t}\right]$$

- 22. Find the Laplace transform of $f(t) = te^{-3t} \cos 2t$.
- 23. Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)}$.
- 24. Find the inverse Laplace transform of $\frac{1}{(s+1)(s^2+4)}$.
- 25. Find the Laplace transform of $f(t) = \begin{cases} t, & 0 < t < a \\ 2a t, & a < t < 2a \end{cases}$ with f(t + 2a) = f(t)
- 26. Find the Laplace transform of square wave function defined by $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ and f(t+2a) = f(t) for all t.
- 27. Find the Laplace transform of the Half wave rectifier $f(t) = \begin{cases} \sin wt, & 0 < t < \pi/w \\ 0 & \pi/w < t < 2\pi/w \end{cases}$ and $f\left(t + \frac{2\pi}{w}\right) = f(t)$ for all t.
- 28. Apply convolution theorem to evaluate $L^{-1} \left[\frac{s}{\left(s^2 + a^2\right)^2} \right]$
- 29. Find the inverse Laplace transform of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$
- 30. Solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = \sin t$, if $\frac{dy}{dt} = 0$ and y = 2 when t = 0 using Laplace transform.

IV.ANALYTIC FUNCTIONS

- 31. Find the regular function whose imaginary part is $e^{-x}(x\cos y + y\sin y)$
- 32. Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y \cos 2x}$
- 33. Prove that the real and imaginary parts of an analytic function are harmonic functions.
- 34. If f(z) = u + iv is a regular function of z in a domain D then $\nabla^2(u^p) = p(p-1)u^{p-1}|f'(z)|^2$
- 35. Verify that the family of curves $u = c_1$ and $v = c_2$ cut orthogonally when $u + iv = z^3$.
- 36. Find the image of the circle |z+1|=1 in the complex plane under the mapping $w=\frac{1}{z}$
- 37. Show that the transformation $w = \frac{1}{z}$ transforms all circles and straight lines in the z-plane into circles or straight lines in the w-plane.
- 38. Find the image of the hyperbola $x^2 y^2 = 1$ under the transformation $w = \frac{1}{x}$.
- 39. Find the bilinear transformation which maps the points $0, 1, \infty$ into i, 1, -i.
- 40. Find the bilinear transformation which maps the points 1, i, -1 onto $0, 1, \infty$, Show that the transformation maps the interior of the unit circle of the z-plane onto the upper half of the w plane.

V.COMPLEX INTEGRATION

- 41. Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)} dz$ where C is |z| = 3.
- 42. Evaluate $\int_{C} \frac{z}{(z-1)(z-2)^2} dz$ where C is the circle $|z-2| = \frac{1}{2}$ by Cauchy's integral formula.
- 43. Evaluate $\int_{C} \frac{(z+1)}{(z^2+2z+4)^2} dz$ where C is the circle |z+1+i| = 2 by Cauchy's integral formula..

Expand the function $f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$ in Laurent's series for |z| > 3 and 2 < |z| > 3.

- 44. Find the Laurent's series of $f(z) = \frac{7z-2}{z(z+1)(z+2)}$ in 1 < |z+1| < 3.
- 45. Evaluate $\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle |z-i|=2 using Cauchy's residue theorem.
- 46. Using Cauchy's residue theorem, evaluate $\int_{c} \frac{4-3z}{z(z-1)(z-2)^2} dz$ where C is the circle

$$|z| = \frac{3}{2}.$$

- 47. Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$ using contour integration.
- 48. Evaluate $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+4)} dx$ using contour integration.
- 49. Evaluate $\int_{-\infty}^{\infty} \frac{x^2 x + 2}{x^4 + 10x^2 + 9} dx$ using contour integration.
- 50. Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^2 + a^2} dx$ using contour integration.

ALL THE BEST.....